
Unit root problem, solution of difference equations
Simple deterministic model, question of unit root

(1− φ1L)Xt = µ

,
Xt − φ1Xt−1 = µ

Solution
Xt = A + Bz t

with unknown z and unknown A (clearly Xt−1 = A + Bz t−1)

0 = Xt − φ1Xt−1 − µ = A + Bz t − φ1(A + Bz t−1)− µ

= A + Bz t − φ1

(
A +

B
z z t

)
− µ

= −µ+ A(1− φ1)︸ ︷︷ ︸
=0

+B
(
1− φ1

z

)
︸ ︷︷ ︸

=0

z t

z = φ1, A = µ
1−φ1

Elimination B by the initial condition

Xt =
µ

1− φ1
+ Bφt

1

Xt0 =
µ

1−φ1
+ Bφt0

1 −→ B =
[
Xt0 −

µ
1−φ1

]
φ−t0

1

Xt =
µ

1− φ1
+

[
Xt0 −

µ

1− φ1

]
φ−t0

1 φt
1(

Xt −
µ

1− φ1

)
=

(
Xt0 −

µ

1− φ1

)
φt−t0

1

Xt − µ
1−φ1

Xt0 −
µ

1−φ1

= φt−t0
1

Qualitative difference for φ1 < 1 and φ1 > 1 (unit root means
z = φ1 = 1)
φ1 = 0.8: t1 − t0 = 0, φ0

1 = 1; t − t0 = 1, φ1
1 = 0.8; t − t0 = 2,

φ2
1 = 0.64; t − t0 = 3; φ3

1 = 0.52; φ10
1 = 0.107, φ100

1 = 2.3× 10−10;
φ1 = 1.2: t − t0 = 10, φ10

1 = 6.19; φ100
1 = 82817974.522;

Unit root signature of nonstationary behaviour z = φ1 = 1
Take homogeneous equation
(1− φ1L)Xt = 0, −→ (1− L)Xt = 0
formally via the "trick" L = 1/z we get characteristic equation
(1− φ1/z) = 0 where the unit root is achieved for z = φ1 = 1

Generalization for AR(p) without stochastic component:

Xt −
p∑

i=1
φiXt−i = 0

Xt − φ1Xt−1 − φ2Xt−2 − φ3Xt−3 . . . φpXt−p = 0

(1− φ1L− φ2L2 − φ3L3 . . .− φpLp)Xt = 0

expected form of solution

Xt = z tX0, t = 0, 1, 2 . . .

(1− φ1(1/z)− φ2(1/z)2 − φ3(1/z)3 . . .− φp(1/z)p)z tX0 = 0

[
1− φ1(1/z)− φ2(1/z)2 − φ3(1/z)3 . . .− φp(1/z)p

]
z tX0 = 0

characteristic equation

zp − φ1zp−1 − φ2zp−2 − φ3zp−3 − . . .− φp = 0
generally has exactly p roots

(z − λ1)(z − λ2) . . . (z − λp) = 0

p∏
k=1

(z − λk)
k = 0

For non-identical (also complex) roots

Xt = B1λ
t
1 + B2λ

t
2 + . . .+ Bpλ

t
p

when roots are identical for e.g. p = 2

Xt = B1λ
t
1 + B2tλt

1

Augmented Dickey-Fuller (ADF)
unit root test
(Rozš́ırený DF test)

The test is widely used by practioners. In statistics, the
traditional DickeyFuller test tests (1979) whether a unit root is
present in an autoregressive model.
In time series models in econometrics (the application of
statistical methods to economics), a unit root is a feature of
processes that evolve through time that can cause problems
in statistical inference if it is not adequately dealt with. Such a
process is non-stationary.
(If the other roots of the characteristic equation lie inside the
unit circle that is, have a modulus (absolute value) less than
one then the first difference of the process will be stationary).
Other words: series of the first difference (previously
considered integrated of order one) turned to be stationary.

R: test available in adf.test()
tseries() [package for Time series analysis and computational
finance]
The testing procedure is applied to the model

∆Xt = α︸︷︷︸
drift

+ δ t︸︷︷︸
lin.trend

+ %︸︷︷︸
par. tested

Xt−1 +

p∑
j=1

ψj∆Xt−j

∆Xt−j = Xt−j − Xt−j−1, ∆Xt = Xt − Xt−1

number of lags of autoregression; default:

p = (length of d.s. − 1)1/3; (example: length of data series
= 65, p = 4); Swert criterion: 12 × (length of d .s./100)1/4

Alternative form:

Xt = α + δt + (1 + %)︸ ︷︷ ︸
φ1 in former notation

Xt−1 +

p∑
j=1

ψj∆Xt−j

∑p
j=1 ψj∆Xt−j the autoregression terms absorbing dynamic

structure

H0: % = 0 for given model has a unit root, process is I (1),
i.e. the data needs to be differenced to make it stationary;

H1: % < 1 i.e. the data is trend stationary, process is I (0)
and needs to be analyzed by means of using a trend in the
regression model instead of differencing the data;

The unit root test is carried out under H0: % = 0 against the
alternative hypothesis of % < 0.

Note 1: Caution: Sometimes if data is exponentially trending
then you might need to take the log of the data first before
differencing it.

Note 2: % = 0 means Xt ∼ Xt−1 (i.e. random walk process)

test statistic [one-sided left tail test]:

ADFτ =
%̂

SE (%̂)

(remind that tscore = %̂
SE(%̂)

)

SE (%̂) is the usual standard error estimate
critical value: t∗1−α(n)

If the test statistic is less than the critical value t∗1−α(n),
then the H0 (% = 0) is rejected and no unit root is present.

Example: A model that includes a constant and a time trend
is estimated using sample of n = 50 observations and yields
the ADFτ statistic of -4.57. This is more negative than the
tabulated t∗ = −3.50, so at the 95 per cent level the null
hypothesis of a unit root will be rejected.

R implementation

> x=arima.sim(n = 1000, list(ma = c(-0.2, 0.2)),sd=1)

> adf.test(x)

Augmented Dickey-Fuller Test

data: x

Dickey-Fuller = -9.8277, Lag order = 9, p-value = 0.01

alternative hypothesis: stationary

Warning message:

In adf.test(x) : p-value smaller than printed p-value

[Note: rejection of null hypothesis that data has

a unit root]

> x= arima.sim(n = 1000, list(ma = c(-0.2, 0.2)),sd=1)

+ 0.1*(c(1:1000)^3)

> adf.test(x)

Augmented Dickey-Fuller Test

data: x

Dickey-Fuller = -0.038, Lag order = 9, p-value = 0.99

alternative hypothesis: stationary

Warning message:

In adf.test(x) : p-value greater than printed p-value

KPSS test

Kwiatkowski, Phillips, Schmidt, Shin (1992)

observed time series xt is expressed as the sum
xt = Tt + RWt + ut :

- deterministic trend Tt

- pure random walk RWt (i.e. I (1)), RWt = RWt−1 + εt
- stationary error term ut (i.e. I (0))

H0: σ2
ε = 0

observable time series is stationary around a deterministic
trend, xt is I (0)

H1: σ2
ε > 0

in R:

> s<-rnorm(1000)

> kpss.test(s)

>

> KPSS Test for Level Stationarity

>

> data: s

> KPSS Level = 0.0429, Truncation lag parameter = 7,

> p-value = 0.1

... stationarity cannot be rejected here ...

Second order Stochastic Difference Equation and
Business Cycles
Samuelson (1939) applied only second order difference equations
to explain the business cycles:

Investment It is dependent on the changes in income rather then
the level of income

It = b1(Yt−1 − Yt−2)

Consumption Ct depends on the past income by the first order
nonhomogeneous equation

Ct = b2Yt−1 + b3

Production/consumption balance with error term

Yt = Ct + It + εt

Consequence - accelerator principle

Yt = b1(Yt−1 − Yt−2) + b2Yt−1 + b3 + εt

simulation in R

b3<-1.04 b2<-0.2 b1<-1.01

Y1<-1.0 Y2<-1.04 Y0<-1

for(i in 1:200){

Y2<-Y1

Y1<-Y0

Y0<-(b1*(Y1-Y2)+b2*Y1+b3)

print(paste(Y0))

}

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100 120 140 160 180 200

Y

time

"./Simul_Samuelson0.txt"

b3<-1.04 b2<-0.2 b1<-1.01 Y1<-1.0 Y2<-1.04 Y0<-1

for(i in 1:200){

Y2<-Y1

Y1<-Y0

Y0<-(b1*(Y1-Y2)+b2*Y1+b3) + rnorm(1,mean=0,sd=0.3)

}

-4

-2

 0

 2

 4

 6

 8

 0 20 40 60 80 100 120 140 160 180 200

Y

time

"./Simul_Samuelson1.txt"
"./Simul_Samuelson2.txt"

Solution of the homogeneous (non-stochastic) Samuelson’s system

Yt = z tY0

z =, b3 = 0

Yt = b1(Yt−1 − Yt−2) + b2Yt−1

z tY0 = b1(z t−1Y0 − z t−2Y0) + b2Y0z
t−1

1 = b1

(
1

z
− 1

z2

)
+ b2

1

z

lag operator formally produces ∼ 1/z

b1

(
1

z
− 1

z2

)
+ b2

1

z
− 1 = 0

b1 + b2
z

− b1
z2
− 1 = 0

z2 − (b1 + b2)z + b1 = 0

z1,2 =
b1 + b2 ±

√
(b1 + b2)2 − 4b1

2

b1 = 1.01, b2 = 0.2, b3 = 1.04

z1,2 =
1.21±

√
1.212 − 4.04

2
= 0.605± i0.8024

|z1,2| = 1.00492, arccos (0.605/|z1,2|) = 0.1465(2π)

Yt = Y0z
t = (1.00492)t [cos(±(2π)0.147t) + i sin(±(2π)0.147t)]

= (1.00492)t exp(i2π0.147t) = (1.00492)t exp
(
i2π

t

6.8

)

Qualitative check of the period

x 1 0.966046199224

2 1.02464804231704

3 1.30411746998738

4 1.58308761594452

5 1.63837737060561

6 1.42351812632883

7 1.10769578854622

x 8 0.9425585965488

9 1.06172315539237

10 1.37270083551048

11 1.62862762402139

12 1.62421158120029

13 1.36038211299075

14 1.04560865970652

x15 0.931200544124225

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

Lag
A

C
F

X1.3751803863379

Comparison Samuelson’s accelerator (b3 = 0) with ARIMA(p,d,.)

Yt = b1(Yt−1 − Yt−2) + b2Yt−1

(
1−

p∑
i=1

φiL
i

)
(1− L)dYt = 0

Try p = 1, d = 1

(1− φ1L)(1− L)Yt = (1− φ1L)(Yt − Yt−1)

= Yt − Yt−1 − φ1(LYt − LYt−1)

= Yt − Yt−1 − φ1(Yt−1 − Yt−2)

Try p = 2, d = 1

(1− φ1 − φ2L)(1− L)Yt = (1− L− Lφ1 + L2φ1 − L2φ2 + L3φ2)

= Yt − Yt−1 − φ1Yt−1 + φ1Yt−2 − φ2Yt−2 + φ2Yt−3)

Try p = 2, d = 0

(1− φ1L− φ2L2)Yt = Yt − φ1Yt−1 − φ2Yt−2

Yt − φ1Yt−1 − φ2Yt−2 = 0

Yt = φ1Yt−1 + φ2Yt−2

Yt = b1(Yt−1 − Yt−2) + b2Yt−1 = (b1 + b2)︸ ︷︷ ︸
φ1

Yt−1 + (−b1)︸ ︷︷ ︸
φ2

Yt−2

Conclusion: Model is transformable to ARIMA(2,0,q)
i.e. d = 0 model

Box Jenkins metodology
1. identification of model, mostly AR(1)

I making sure that model is stationary
I using plots of ACF, and PACF

2. estimation of the model parameters: say xt = 0.68xt−1 + εt ,
σ̂ = 11.24

I using the maximum likelihood
I non-linear least-squares

3. diagnostics of the model: prediction abilities, Ljung-Box test

Model identification by means of autocorrelation function:

AR(p) MA(q) ARMA(p, q)

ρk k0 does not exist k0 = q k0 does not exist
ACF ρk is U shaped ρk becomes

U-shaped after first q − p values

ρkk k0 = p k0 does not exist k0 does not exist
PACF ρkk is limited ρkk becomes

by U-shaped curve U-shaped after the first q − p values

Table: U denotes the curve of geometrically or sin-like decaying
amplitudes.

Rule 1 If the series has positive autocorrelations out to a high number
of lags, then it probably needs a higher order of differencing.

Rule 2 If the lag-1 autocorrelation is zero or negative, or the
autocorrelations are all small a patternless, then the series
does not need a higher order of differencing. If the lag-1
autocorrelation is -0.5 or more negative, the series may be
overdifferenced. Beware of overdifferencing.

Rule 3 The optimal order of differencing is then often the order at
which the standard deviation is lowest.

Rule 4 A model with no orders of differencing assumes that the
original series is stationary.

Rule 5 A model with no orders of differencing normally includes a
constant term

Rule 6 If the part of PACF of the differenciated series displays a sharp
cutoff and/or the lag 1 autocorrelation is positive, i.e. the

series appears slightly ”underdifferenced” then consider adding
one or more AR terms to the model

Rule 7 The autocorrelation function ACF of the differenced series
displays a sharp cutoff and or the lag-1 autocorrelation
function is negative .

Rule 8 It is possible for an AR term and MA term to cancel each
other’s effects, so if a mixed AR-MA model seems to fit data
also try a model with one fewer AR term.

Rule 9 If there is a unit root in the AR part of the model the sum of
AR coefficients is almost exactly 1

Rule 10 If the long-term forecasts appear erratic or unstable, there
may be a unit root.

Rule 11 If the series has a strong and consistent seasonal pattern, then
you should use an order of seasonal differencing.

Autoregression of simulated time series of the
price formation process

Model of random process: p0, p1, p2, p3, . . ., pt , . . .

if pt > pfun {p̃t+1 = pt × 0.99}
else p̃t+1 = pt

if p̃t+1 < pfun {pt+1 = p̃t+1 × 1.01}
else pt+1 = p̃t+1

pt+1 = p t+1 exp [N(0, 0.01)]

R project: simulation of price dynamics

pfun<-1 # "fundamental" price

p<-(pfun+0.01) # initial price setting

vp<-p # auxilliary initial vector setting for plot

Ns<-1000 # number of steps

time=c(0:Ns) # vector of times

for(i in 1:Ns){

if(p>pfun) p<-(p * 0.99) # deterministic reduction

if(p<pfun) p<-(p * 1.01) # deterministic increase

p<-(p*exp(rnorm(1,mean=0,sd=0.01))) #randomization
vp<-cbind(vp,p)

}

vp<-as.vector(vp)

pdf("tp_simul.pdf")
plot(time,vp, type="l", pch=21, xlab="time", ylab="p")
dev.off()

0 200 400 600 800 1000

0.
96

0.
98

1.
00

1.
02

1.
04

time

p

Testing of simulated price series for stationarity

adf.test(vp)

Augmented Dickey-Fuller Test

data: vp
Dickey-Fuller = -9.0344, Lag order = 9, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(vp) : p-value smaller than printed p-value

conclusion: reject unit root

Selection of the "best" arima model
based on the Aikake information criterion
The Akaike information criterion is a measure of the relative
goodness of fit of a statistical model. It is grounded in the
concept of information entropy, in effect offering a relative measure
of the information lost when a given model is used to describe
reality. In the general case, the AIC is AIC = 2k − 2 ln(L), where k
is the number of parameters in the statistical model, and L is the
maximized value of the likelihood function for the estimated
model. To apply AIC in practice, we start with a set of candidate
models, and then find the models corresponding AIC values. There
will almost always be information lost due to using one of the
candidate models to represent the "true" model. We wish to
select, from among n candidate models, the model that minimizes
the estimated information loss. Denote the AIC values of the
candidate models by AIC1, AIC2, AIC3, . . . , AICn. Let AICmin be
the minimum of those values. Then e(AICmin−AIC i)/2 can be
interpreted as the relative probability that the i-th model minimizes
the (estimated) information loss.

##
Fit an ARIMA model to a univariate time series.
Usage
arima(x, order = c(0, 0, 0),

seasonal = list(order = c(0, 0, 0), period = NA),
....
optim.control = list(), kappa = 1e6)

Example: R code for selection of the "best" model
Aikake’s information criterion, select among 10 candidate models

a1=arima(vp,order=c(0,0,0))
a2=arima(vp,order=c(0,0,1))
a3=arima(vp,order=c(0,1,0))
a4=arima(vp,order=c(1,0,0))
a5=arima(vp,order=c(1,1,0))
a6=arima(vp,order=c(0,1,1))
a7=arima(vp,order=c(1,0,1))
a8=arima(vp,order=c(1,1,1))
a8=arima(vp,order=c(0,0,2))
a9=arima(vp,order=c(0,2,0))
a10=arima(vp,order=c(2,0,0))

veca=as.vector(cbind(a1$aic,a2$aic,a3$aic,a4$aic,
a5$aic,a6$aic,a7$aic,a8$aic,a9$aic,a10$aic))

which.min(veca)

Model Outputs:

> which.min(veca)
[1] 4

Check the best:
> a4
Call:
arima(x = vp, order = c(1, 0, 0))

Coefficients:
ar1 intercept

0.3941 1.0042
s.e. 0.0290 0.0005

sigma^2 estimated as 0.0001101: log likelihood = 3140.99,
aic = -6275.98

!!! intercept indicates fundamental price p_fun=1

Check another one = not the best
> a3
Call:
arima(x = vp, order = c(0, 1, 0))

sigma^2 estimated as 0.0001581:
log likelihood = 2957.18,
aic = -5912.36

Forecast by Arima

predict.Arima {stats} R Documentation

Forecast from ARIMA fits
Description: Forecast from models fitted by arima.

predict(object, n.ahead = 1, newxreg = NULL,
se.fit = TRUE, ...)

Arguments:
object The result of an arima fit.

n.ahead The number of steps ahead for
which prediction is required.

Make the prediction:
> a4=arima(x=vp, order=c(1,0,0))
> predict(a4,n.ahead=6)
\$pred
Time Series:
Start = 1002
End = 1007
Frequency = 1
[1] 1.005989 1.004901 1.004472 1.004303 1.004236
1.004210

\$se
Time Series:
Start = 1002
End = 1007
Frequency = 1
[1] 0.01049478 0.01128027 0.01139739 0.01141547
0.01141828 0.01141871

Testing of forecast

vp1=vp[1:990]
> a4=arima(vp1,order=c(1,0,0))
> vp2=vp[991:1000]
> pre=predict(a4,n.ahead=10)

Time Series:
Start = 991
End = 1000
Frequency = 1
[1] 1.002855 1.003630 1.003936 1.004057 1.004104 1.004123 1.004131 1.004133
[9] 1.004135 1.004135

\$se
Time Series:
Start = 991
End = 1000
Frequency = 1

[1] 0.01048887 0.01127568 0.01139327 0.01141146 0.01141429 0.01141473
[7] 0.01141480 0.01141481 0.01141481 0.01141481

> vp2
[1] 1.0091107 0.9884819 0.9970753 1.0119451 0.9983571 1.0193618 1.0258751
[8] 1.0078596 1.0182782 1.0172228

vpred=pre\$pred[1:10]

> vp2-vpred
[1] 0.006256168 -0.015148120 -0.006860733 0.007888411 -0.005747281
[6] 0.015238707 0.021744591 0.003726142 0.014143558 0.013087774

compare errors with a mean standard deviation

(vp2-vpred)/mean(se1)
[1] 0.5533614 -1.3398593 -0.6068355 0.6977342 -0.5083501 1.3478718
[7] 1.9233207 0.3295793 1.2510053 1.1576206

