
Time Series Analysis

Time series (explain also random process)
x1, x2, . . . , xt, . . .
{x}t or {xt}

Multivariate Time series
x1, x2, . . . , xt, . . .
y1, y2, . . . , yt, . . .
z1, z2, . . . , zt, . . .

Example 1: Currency Time series
(EUR/USD)1, (EUR/USD)2, . . . , (EUR/USD)t, . . .
(GBP/USD)1, (GBP/USD)2, . . . , (GBP/USD)t, . . .

Example 2: Currency Time series including bid-ask spread
(EUR/USD)ask,1, (EUR/USD)ask,2, . . . , (EUR/USD)ask,t, . . .
(EUR/USD)bid,1, (EUR/USD)bid,2, . . . , (EUR/USD)bid,t, . . .
(GBP/USD)ask,1, (GBP/USD)ask,2, . . . , (GBP/USD)ask,t, . . .
(GBP/USD)bid,1, (GBP/USD)bid,2, . . . , (GBP/USD)bid,t, . . .

Time: multiple understanding: physical time (GMT), alternatives:
trading time (number of trades, volume), number of quotes (high
frequency trading, algotrading), problem of weekends

Descriptive statistics of time series

Mean: E(xt) = µx = const

Standard deviation and variance: var(xt) = σ2x

Autocorrelation function (ACF):

γk = cov(xt, xt−k) = E[(xt − µ)(xt−k − µ)] (1)

ρk =
γk
γ0

=
γk
σ2x

= corr(xt, xt−k)

Cross correlation function

ρ̃k = corr(xt, yt−k)

Parcial correlations

Nonlinear type statistics: higher order correlation functions,
E[(xt − µ)2(xt−k − µ)]
E[(xt − µ)2(xt−k − µ)2]
E[|xt − µ|q|xt−k − µ|r]

Structure functions, Hurst exponents, correlation dimensions . . .

2

Stationary process
In mathematics, a stationary process (or strictly stationary pro-

cess or strongly stationary process) is a stochastic process whose
joint probability distribution does not change when shifted in time
or space. Consequently, parameters such as the mean and variance,
if they are present, also do not change over time or position.

Let {xt} be a stochastic process and let Fx(xt1+τ , . . . , xtk+τ) repre-
sents cumulative distribution function of {xt} at times t1+τ, . . . , tk+
τ . Then {xt} is said to be stationary if for all k, for all τ and for
all t1, t2, . . . , tk

Fx(xt1, xt2, . . . , xtk) = Fx(xt1+τ , xt2+τ , . . . , xtk+τ) . (2)

Since τ does not affect Fx(.), Fx is not a function of time.
Weak or wide sense stationary

Weak or wide sense (WSS) stationary random processes only
require that 1st moment and covariance do not vary with respect
to time. [Any strictly stationary process which has a mean and a
covariance is also WSS].

The restriction on the mean

µx = E[xt] = E[xt+τ] , ∀τ ∈ R

restriction on the autocovariance

γt1,t2 = E[(xt1 − µx)(xt2 − µx)]

is
γt1,t2 = γt1+τ,t2+τ

As t2 = −τ we obtain
γt1,t2 = γt1−t2,0

Other terminology:
• stationary up to order m
• second-order stationarity
• trend stationary

3

Trend stationary
Stochastic process is trend stationary if an underlying trend (func-

tion solely of time) can be removed, leaving a stationary process. A
process {xt} is said to be trend stationary if

xt = f(t) + et (3)

where f(t) is any function mapping from the reals to the reals, and
{et} is a stationary process.

Example:
Many economic time series are characterized by exponential growth.

The example is

GDPt = B exp(at)Ut

ln(GDPt)︸ ︷︷ ︸
xt

= ln(B) + at︸ ︷︷ ︸
f(t)

+ lnUt︸ ︷︷ ︸
et

4

Data filtering and data standardization:
The raw data are often transformed to become stationary.
The procedures may include:

• data standardization (e.g. z-score)
• noise suppression methods (convolutions)
• time series decomposition :

(a) identification of seasonal regularities
(b) trend identification/elimination procedures
(c) identification of the periodicity (DFT - discrete fourier

transform)

Statistical data tests:
• tests of stationarity
• tests of randomness (runs test)
• tests of the Gaussian vs. non-Gaussian behaviour (Lévy flight)

fat tailed behaviour fluctuations

5

Parametric statistics of time series and classical Model-Based analysis

linear in parameters autoregression: (Box-Jenkins methodology):
models:
MA, AR, ARMA, ARIMA, ARCH, GARCH, VAR, VECM

MA - moving average model
AR - autoregressive model
ARMA - autoregressive moving average model
ARIMA - autoregressive integrated moving average models
ARCH - autoregressive conditional heteroskedasticity models
GARCH - generalized autoregressive conditional heteroskedas-

ticity models
VAR - vector autoregression
VECM - vector error correction model

6

Data standardization and normalization (standardizing raw data series)

Motivation

A. (standardization- normalization of the data step is very impor-
tant when dealing with parameters of different units and scales. For
example, some data mining techniques use the Euclidean distance.
Therefore, all parameters should have the same scale for a fair com-
parison between them.

B: The importance of standardizing variables for multivariate analy-
sis. Without standardization, the variables measured at different scales
do not contribute equally to the analysis.

1a. zt = xt−E(xt)
σ̂x

(z-score scaling)

E(z) = 0, σ̂z = 1

1b. zt = xt−median(xt)

E(|xt−median(xt)|)

2. zt = xt
E(xt)

, Ê(z) = 1 (transform into dimensionless case)

3. 0-1 scaling since zt ∈< 0, 1 >, This method allows variables to
have differing means and standard deviations but equal ranges.

zt =
xt −minτ∈[t−T,t] xτ

maxτ∈[t−T,t] xτ −minτ∈[t−T,t] xτ

4.a. zt ≡ zt,T = xt − xt−T (returns, stationarity)

4.b. zt = xt−xt−T
xt

4.c. zt = xt−xt−T
xt−T

4.d. zt = 2(xt−xt−T)
xt+xt−T

4.e. higher order differences; the differencing is applied to the series
before estimating models. Differencing is necessary when trends
are present (series with trends are typically nonstationary and e.g.
ARIMA modeling assumes stationarity) and is used to remove their
effect.

5.a. zt = log(xt) (log-transform transformation, size effect)

5.b. zt = (xt+c)
λ−1

λ (Box-Cox transform, size)

5.c. zt = log(xt)− log(xt−T) (log returns)

6.a. zt = xt − x̂t|history) (deviations from the predictions)

6.b. zt = xt − M̂A[t−T,t](xτ)

6.c. zt = xt − ˆEMA[t−T,t](xτ)

6.d. zt = xt − ˆTrend[t−T,t](xτ)

2

Example of (0,1) scaling in R:

> x=rnorm(10,0,2)

> x

[1] -3.6009900 -0.5465578 2.9292530 0.3562723 -0.6894619 1.1027583

[7] -4.7105555 3.0792583 3.9019479 -4.3988261

> X=rnorm(10,0,20)

> X

[1] 14.286801 9.420125 10.252706 38.964826 -16.660802 -9.404258

[7] -9.292123 -4.677444 7.710518 -15.567768

> xmin=min(x)

> xmin

[1] -4.710556

> Xmin=min(X)

> Xmin

[1] -16.6608

> xmax=max(x)

> xmax

[1] 3.901948

> Xmax=max(X)

> Xmax

[1] 38.96483

> z=(x-xmin)/(xmax-xmin)

> Z=(X-Xmin)/(Xmax-Xmin)

> z

[1] 0.12883194 0.48348285 0.88706014 0.58831068 0.46689022 0.67498537

[7] 0.00000000 0.90447730 1.00000000 0.03619498

> Z

[1] 0.55635512 0.46886531 0.48383288 1.00000000 0.00000000 0.13045324

[7] 0.13246913 0.21542871 0.43813113 0.01964983

Example: z score scaling

z1=(x-mean(x))/sd(x)

> z1

[1] -1.06169658 -0.09173266 1.01204403 0.19496958 -0.13711320 0.43202331

[7] -1.41404964 1.05967965 1.32093253 -1.31505702

> sd(z1)

[1] 1

> mean(z1)

[1] 5.561957e-18

3

Autocorrelation function, Partial Correlation function
Cross Correlation function
implementation in R

Partial Autocorrelation function of lag k is another way to
measure the connection between variables xt and xt+τ ; the pur-
pose is to filter out the linear influence of the random variables
xt+1, . . . , xt+τ−1 that lie in between xt and xt+τ and then calculate
the correlation of the transformed random variables:

pacf1 = cor(xt, xt+1) ,

pacfk = cor
(
xt+k − Proj(xt+k|xt+1, . . . , xt+k−1),

xt − Proj(xt|xt+1, . . . , xt+k−1)
)

R documentation

acf {stats}

Auto- and Cross- Covariance and -Correlation Function Estimation

Description

The function acf computes (and by default plots)

estimates of the autocovariance or autocorrelation function.

Function pacf is the function used for the partial autocorrelations.

Function ccf computes the cross-correlation or cross-covariance

of two univariate series.

1

acf(x, lag.max = NULL,

type = c("correlation", "covariance", "partial"),

plot = TRUE,

na.action = na.fail, demean = TRUE, ...)

pacf(x, lag.max, plot, na.action, ...)

data lh in R

Examples from Venables & Ripley

lh data luteinizing Hormone in Blood Samples

Description: A regular time series giving the luteinizing hormone in blood

samples at 10 mins intervals from a human female, 48 samples

lh

Time Series:

Start = 1

End = 48

Frequency = 1

[1] 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2.0 1.9 1.7 2.2 1.8 3.2 3.2 2.7 2.2

2.2

[20] 1.9 1.9 1.8 2.7 3.0 2.3 2.0 2.0 2.9 2.9 2.7 2.7 2.3 2.6 2.4 1.8 1.7 1.5

1.4

[39] 2.1 3.3 3.5 3.5 3.1 2.6 2.1 3.4 3.0 2.9

> ?lh

2

Time

lh

0 10 20 30 40

1.
5

2.
0

2.
5

3.
0

3.
5

> plot(acf(lh))

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series lh

> plot(pacf(lh))

3

5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6

Lag

P
ar

tia
l A

C
F

Series lh

4

data ldeaths, mdeaths, fdeaths

UKLungDeaths package:datasets R Documentation

Monthly Deaths from Lung Diseases in the UK

Description:

Three time series giving the monthly deaths from bronchitis,

emphysema and asthma in the UK, 1974-1979, both sexes (ldeaths),

males (mdeaths) and females (fdeaths).

ccf(mdeaths, fdeaths, ylab = "cross-correlation")

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

Lag

cr
os

s−
co

rr
el

at
io

n

mdeaths & fdeaths

5

Linear filtering

Filtering - one of the most basic tools for transforming time series
(e.g. for eliminating seasonality) is linear filtering.
original time series: {X}t
transformed - filtered time series: {x̂}t

As an important class of linear filters are finite moving averages,
transformations that replace the original raw data Xt by the
weighted sum

x̂t =
j=s∑
j=−r

ajXt+j , t = r + 1, . . . , n− s

If s = r, the filter is called symmetric.

Example: s = r = 2, symmetric filter determined by 5-tuple of
coefficients (a−2, a−1, a0, a1, a2)

x̂t = a−2Xt−2 + a−1Xt−1 + a0Xt + a1Xt+1 + a2Xt+2 (1)

Try setting: (1/4, 1/2, 1, 1/2, 1/4)

x̂t = (1/4)Xt−2 + (1/2)Xt−1 + Xt + (1/2)Xt+1 + (1/4)Xt+2 (2)

In R the function filter() permits of fairly general filters, its
argument filter takes a vector containing the coefficients aj.

Illustration - Rewrite the aforementioned sum

x̂r+1 = a−rX1 + a−r+1X2 + . . . + asXr+1+s

x̂r+2 = a−rX2 + a−r+1X3 + . . . + asXr+2+s

x̂r+3 = a−rX3 + a−r+1X4 + . . . + asXr+3+s

x̂n−s−1 = a−rXn−s−1−r + a−r+1Xn−s−r + . . . + asXn−1

x̂n−s = a−rXn−s−r + a−r+1Xn−s−r+1 + . . . + asXn

1

Illustration: n = 10, s = 2, r = 1

x̂2 = a−1X1+a0X2+a1X3+a2X4 = (a−1, a0, a1, a2)·(X1, X2, X3, X4)

x̂3 = a−1X2+a0X3+a1X4+a2X5 = (a−1, a0, a1, a2)·(X2, X3, X4, X5)

x̂4 = a−1X3+a0X4+a1X5+a2X6 = (a−1, a0, a1, a2)·(X3, X4, X5, X6)

x̂5 = a−1X4+a0X5+a1X6+a2X7 = (a−1, a0, a1, a2)·(X4, X5, X6, X7)

x̂6 = a−1X5+a0X6+a1X7+a2X8 = (a−1, a0, a1, a2)·(X5, X6, X7, X8)

x̂7 = a−1X6+a0X7+a1X8+a2X9 = (a−1, a0, a1, a2)·(X6, X7, X8, X9)

x̂8 = a−1X7 + a0X8 + a1X9 + a2X10 =
(a−1, a0, a1, a2) · (X7, X8, X9, X10)

Illustration MA: (Moving average - technical
analysis)
(Only the past values are known!)

MA:

r = 1, s = 0

(a−1, a0) = (1/2, 1/2)

x̂t = a−1Xt−1 + a0Xt = (Xt + Xt−1)/2

2

R application

filter package:stats R Documentation

Linear Filtering on a Time Series

Description:

Applies linear filtering to a univariate time series or to each

series separately of a multivariate time series.

Usage:

filter(x, filter, method = c("convolution", "recursive"),

sides = 2, circular = FALSE, init)

method: Either "convolution" or "recursive" (and can be

abbreviated). If "convolution" a moving average is used: if

"recursive" an autoregression is used.

sides: for convolution filters only. If sides=1 the filter

coefficients are for past values only; if sides=2 they are

centred around lag 0. In this case the length of the filter

should be odd, but if it is even, more of the filter is

forward in time than backward.

The filter c(1/2,rep(1,11),1/2)/12) eliminates seasonability

c(1/2,rep(1,11),1/2)/12) =

[1] 0.04166667 0.08333333 0.08333333 0.08333333 0.08333333 0.08333333

[7] 0.08333333 0.08333333 0.08333333 0.08333333 0.08333333 0.08333333

[13] 0.04166667

> plot(UKDriverDeaths)

> lines(filter(UKDriverDeaths,c(1/2,rep(1,11),1/2)/12),col=2)

3

Time

U
K

D
riv

er
D

ea
th

s

1970 1975 1980 1985

10
00

15
00

20
00

25
00

4

Decomposition

Filtering with moving averages can also be used for additive or multiplicative
decomposition into seasonal, trend, and irregular components. The classical
approach to this task, implemented in the function decompose(), is to take
simple symmetric filter as illustrated above for extracting and derive seasonal
component by averaging the trend-adjusted observations from the
corresponding periods.

Description:

Decompose a time series into seasonal, trend and irregular

components using moving averages. Deals with additive or

multiplicative seasonal component.

Usage:

decompose(x, type = c("additive", "multiplicative"), filter = NULL)

Arguments:

x: A time series.

type: The type of seasonal component. Can be abbreviated.

filter: A vector of filter coefficients in reverse time order (as for

AR or MA coefficients), used for filtering out the seasonal

component. If NULL, a moving average with symmetric window

is performed.

The additive model used (R):

xt = Tt + St + et

The multiplicative model (R):

xt = TtStet

1. the trend component Tt is determined using a moving average (if filter is
NULL, a symmetric window with equal weights is used), and removes it
from the time series.

2. the seasonal component St is computed by averaging, for each time unit,
over all periods. The seasonal figure is then centered.

5

3. the error component et is determined by removing trend and seasonal
figure (recycled as needed) from the original time series.

> dd_dec<-decompose(log(UKDriverDeaths))

> dd_stl<-stl(log(UKDriverDeaths),s.window=13)

> plot(dd_stl)

> plot(dd_dec)

7.
0

7.
2

7.
4

7.
6

7.
8

ob
se

rv
ed

7.
2

7.
3

7.
4

7.
5

7.
6

tr
en

d

−
0.

1
0.

0
0.

1
0.

2

se
as

on
al

−
0.

15
−

0.
05

0.
05

0.
15

1970 1975 1980 1985

ra
nd

om

Time

Decomposition of additive time series

6

7.
0

7.
2

7.
4

7.
6

7.
8

da
ta

−
0.

1
0.

0
0.

1
0.

2

se
as

on
al

7.
2

7.
3

7.
4

7.
5

7.
6

tr
en

d

−
0.

15
−

0.
05

0.
05

0.
15

1970 1975 1980 1985

re
m

ai
nd

er

time

the access to signal components can be done by means of

dd_dec$trend

dd_dec$figure (seasonal)

dd_dec$random (remainder)

7

Grounds of linear autoreggression
Moving-average (MA) model

In time series analysis, the moving-average (MA) model
is a common approach for modeling univariate time
series models. The notation MA(q) refers to the moving
average model, the value of q is called the order of the
MA model.

Xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q

Alternative description in terms of lag operators

Xt − µ = θ(L̂)εt

θ(L̂) = +1 + θ1L̂+ · · ·+ θqL̂
q

µ is the mean of the series, the

θ1, ..., θq are the parameters of the model and the

εt, εt−1,...εt−q are white noise error terms with the
properties

E(εt) = 0
E(ε2t) = σ2ε ,
E(εtεt′) = 0 (as t 6= t′)

1

Consequences:
E(Xt) = µ

σ2X =
(
1 + θ21 + · · ·+ θ2q

)
σ2ε

ρk = 0, as k > q

Special case MA(2), q = 2

Xt = µ+ εt + θ1εt−1 + θ2εt−2

σ2X =
(
1 + θ21 + θ22

)
σ2ε

ρ1 = corr(Xt, Xt−1) =
θ1(1 + θ2)

1 + θ21 + θ22

ρ2 = corr(Xt, Xt−2) =
θ2

1 + θ21 + θ22

ρ3 = 0

Example: θ1 = 1, θ2 = 1, σ2X = 3σ2ε = 3

> MA2<-arima.sim(model=list(ma=c(1,1)),n=20000) # sd=1

> mean(MA2)

[1] -0.0007542627

> sd(MA2)^2

[1] 3.003547

2

verify relation acf,

> th1=1

> th2=1

> th1*(1+th2)/(1+th1*th1+th2*th2)

[1] 0.6666667

> th2/(1+th1*th1+th2*th2)

[1] 0.3333333

pdf("fig_acfMA2lag5.pdf")

> plot(acf(MA2, lag.max=5))

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series MA2

when set sd=2 we obtain different dispersion

MA2<-arima.sim(model=list(ma=c(1,1)),n=200,sd=2)

> sd(MA2)^2

[1] 12.65155

3

AR(p) model

Xt = µ+
p∑

i=1

ϕiXt−i + εt

ϕ1, . . . , ϕp are the parameters of the model,
µ is a constant (often omitted for simplicity) mostly called drift
εt is white noise (uncorrelated, gaussian)

constraints on the model to remain wide-sense stationary
• AR(1) model with |ϕ1| ≥ 1 is not stationary

• generally, for an AR(p) model to be wide-sense
stationary, the roots of the polynomial

zp −∑p
i=1 ϕiz

p−i

must lie within the unit circle i.e.,

each root zi must satisfy |zi| < 1

AR(1) process

Xt = µ+ ϕ1Xt−1 + εt

wide-sense stationary if

|ϕ1| < 1

since it is obtained as the output of a stable filter whose input is the white
noise. (If ϕ1 = 1 then Xt has infinite variance, and is therefore not wide
sense stationary.) Consequently, assuming |ϕ1| < 1, the mean E(Xt) is
identical for all values of t

Mean

E(Xt) = E(µ) + ϕ1E(Xt−1) + E(εt)

E(Xt) =
µ

1− ϕ1
.

1

Variance

var(Xt) =
σ2ε

1− ϕ2
1

Autocovariance

E(Xt−τXt) =
σ2εϕ

|τ |

1− ϕ2
1

2

ar {stats} R Documentation (econometry)

Fit Autoregressive Models to Time Series

Description

Fit an autoregressive time series model to

the data, by default selecting

the complexity by AIC.

Usage

ar(x, aic = TRUE, order.max = NULL,

method=c("yule-walker",

"burg", "ols", "mle", "yw"),

na.action, series, ...)

3

Auto-Regressive Integrated Moving Average, ARIMA
ARIMA(p, d , q): ARIMA models are, in theory, the most general
class of models for forecasting a time series which can be
stationarized by transformations such as differencing and logging.
A nonseasonal ARIMA model is classified as an ARIMA(p, d , q)
model:

1 −
p∑

j=1
φjLj

 (1 − L)d Xt =

1+
q∑

j=1
bjLj

 εt

p is the number of autoregressive terms (AR)
d is the number of nonseasonal differences, deterministic trend
component of the model
q is the number of lagged forecast errors in the prediction equation
(MA)
εt are generally assumed to be independent, identically distributed
(iid) variables sampled from a normal distribution with zero mean

Example 1: Integration process:

1. p = 0, d = 0, q = 0 ARIMA(0,0,0)
(1 − L)0Xt = εt
Xt = εt

2. p = 0, d = 1, q = 0 ARIMA(0,1,0)
(1 − L)1Xt = εt
Xt − Xt−1 = εt
Xt = Xt−1 + εt (integrated of 1-st order, random walk)

3. p = 0, d = 2, q = 0 ARIMA(0,2,0)
(1 − L)2Xt = εt
Xt − 2Xt−1 + Xt−2 = εt
(Xt − Xt−1) − (Xt−1 − Xt−2) = εt
(integrated of 2nd order)
(differences of first differences are stationary)

Example 2: for p = 1, d = 1, q = 1,
ARIMA(1,1,1) to ARMA relations
LXt = Xt−1, L2Xt = Xt−2

(1 − φ1L)(1 − L)Xt = εt + b1Lεt

(1 − L − φ1L + φ1L2)Xt = εt + b1Lεt

Xt − Xt−1(1 + φ1) + φ1Xt−2 = εt + b1εt−1

Xt = Xt−1 (1 + φ1)︸ ︷︷ ︸
a1

+−φ1︸ ︷︷ ︸
a2

Xt−2 + εt + b1εt−1

Xt = a1Xt−1 + a2Xt−2 + εt + b1εt−1

is of ARMA(2, 1) type

Auto regressive Integrated Moving Average (ARIMA)
Including Seasonality features.
Notation:
A very useful notation to describe the orders of various components
in the multiplicative seasonal ARIMA model is given by

(p, d , q) × (P,D,Q)

p order of autoregressive AR part of the ARIMA model at
non-seasonal level
d order of differencing at non-seasonal level
q order of the moving average (MA) part of the ARIMA model at
non-seasonal level
P order of autoregressive AR part of the ARIMA model at seasonal
level
D order of differencing at seasonal level
Q order of the moving average (MA) part of the ARIMA model at
seasonal level

ARIMA seasonal

arima(USAccDeaths, order = c(0,1,1),

seasonal = list(order=c(0,1,1)))

Call:

arima(x = USAccDeaths, order = c(0, 1, 1),

seasonal = list(order = c(0, 1, 1)))

Coefficients:

ma1 sma1

-0.4303 -0.5528

s.e. 0.1228 0.1784

sigma^2 estimated as 99347:

log likelihood = -425.44, aic = 856.88

ARIMA (p, d , q) × (P ,D,Q)s Box Jenkins

φ(L)Φ(L)(1−L)d(1−Ls)DYt = µ+θ(L)Θ(L)εt

φ(L) = 1 − φ1L − φ2L2 − . . . φpLp

AR(p) operator non-seasonal

Φ(L) = 1 − Φ1Ls − Φ2L2s − . . .ΦPLsP

AR(sP) operator seasonal

θ(L) = 1 − θ1L − θ2L2 − . . . θqLq

MA(q) operator non-seasonal

Θ(L) = 1 − Θ1Ls − Θ2L2s − . . .ΘQLsQ

MA(sQ) operator seasonal

ARIMA Modelling of Time Series

Description:
Fit an ARIMA model to a univariate time series.

Usage:
arima(x, order = c(0, 0, 0),

seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE,
transform.pars = TRUE,
fixed = NULL, init = NULL,
method = c("CSS-ML", "ML", "CSS"),
n.cond, optim.method = "BFGS",
optim.control = list(), kappa = 1e6)

Arguments:
x: a univariate time series

order: A specification of the non-seasonal part of the ARIMA model:
the three components (p, d, q) are the AR order, the degree
of differencing, and the MA order.

Examples arima(lh, order = c(1,0,0))
arima(USAccDeaths, order = c(0,1,1),

seasonal = list(order=c(0,1,1)))

Connections between ARMA and MA,approach to unit root non-stationary behavior
Wold decomposition

define ARMA(p, q)

Xt = µ+ εt +
p∑

i=1
φiXt−i +

q∑
j=1

θjεt−j

Reminder: MA(q)

Xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q

Conversion of ARMA(1, 0)

Xt = εt + 0.1Xt−1

, µ = 0
Begin: try to substitute MA(1) into ARMA(1, 0)

Xt ' εt + θ1εt−1 + θ2εt−2

Xt−1 ' εt−1 + θ1εt−2 + θ2εt−3

εt + θ1εt−1 + θ2εt−2 ' εt + 0.1(εt−1 + θ1εt−2 + θ2 εt−3︸︷︷︸
exclude

)

θ1εt−1 + θ2εt−2 ' 0.1(εt−1 + θ1εt−2 + θ2εt−3)
θ1εt−1 + θ2εt−2 ' 0.1(εt−1 + θ1εt−2)
θ1 = 0.1, θ2 = 0.1θ1 = 0.01
Xt ' εt + 0.1εt−1 + 0.01εt−2
Xt = εt + 0.1εt−1 + 0.01εt−2 + . . .

ARMAtoMA {stats} R Documentation

Convert ARMA Process to Infinite MA Process

Usage: ARMAtoMA(ar = numeric(), ma = numeric(), lag.max)

Let:

c(0.1) ar coefficient phi_1

0 zero mean
40 terms approximation
ARMAtoMA(ar=c(0.1),0,40)

resulting MA coefficients:

[1] 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06 1e-07 1e-08 1e-09 1e-10 1e-11 1e-12
[13] 1e-13 1e-14 1e-15 1e-16 1e-17 1e-18 1e-19 1e-20 1e-21 1e-22 1e-23 1e-24
[25] 1e-25 1e-26 1e-27 1e-28 1e-29 1e-30 1e-31 1e-32 1e-33 1e-34 1e-35 1e-36
[37] 1e-37 1e-38 1e-39 1e-40

Example of the transition from the stationary to the non-stationary
behaviour

> ARMAtoMA(ar=c(0.9),0,40)
[1] 0.90000000 0.81000000 0.72900000 0.65610000 0.59049000 0.53144100
[7] 0.47829690 0.43046721 0.38742049 0.34867844 0.31381060 0.28242954

[13] 0.25418658 0.22876792 0.20589113 0.18530202 0.16677182 0.15009464
[19] 0.13508517 0.12157665 0.10941899 0.09847709 0.08862938 0.07976644
[25] 0.07178980 0.06461082 0.05814974 0.05233476 0.04710129 0.04239116
[31] 0.03815204 0.03433684 0.03090315 0.02781284 0.02503156 0.02252840
[37] 0.02027556 0.01824800 0.01642320 0.01478088
\end{verbatim
}

\vspace*{3mm}

approach to non-stationarity

{\scriptsize
\begin{verbatim}
> ARMAtoMA(ar=c(0.99),0,40)

[1] 0.9900000 0.9801000 0.9702990 0.9605960 0.9509900 0.9414801 0.9320653
[8] 0.9227447 0.9135172 0.9043821 0.8953383 0.8863849 0.8775210 0.8687458

[15] 0.8600584 0.8514578 0.8429432 0.8345138 0.8261686 0.8179069 0.8097279
[22] 0.8016306 0.7936143 0.7856781 0.7778214 0.7700431 0.7623427 0.7547193
[29] 0.7471721 0.7397004 0.7323034 0.7249803 0.7177305 0.7105532 0.7034477
[36] 0.6964132 0.6894491 0.6825546 0.6757290 0.6689718

> ARMAtoMA(ar=c(1),0,40)

[1] 1
> 1 1
[39] 1 1
> ARMAtoMA(ar=c(1.1),0,40)
[1] 1.100000 1.210000 1.331000 1.464100 1.610510 1.771561 1.948717
[8] 2.143589 2.357948 2.593742 2.853117 3.138428 3.452271 3.797498

[15] 4.177248 4.594973 5.054470 5.559917 6.115909 6.727500 7.400250
[22] 8.140275 8.954302 9.849733 10.834706 11.918177 13.109994 14.420994
[29] 15.863093 17.449402 19.194342 21.113777 23.225154 25.547670 28.102437
[36] 30.912681 34.003949 37.404343 41.144778 45.259256

